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Ex 8.1 (Distributional derivatives as difference quotients)
Let T ∈ D′(Rd) be a distribution. For h > 0 and 1 ≤ j ≤ d define τh,i : D(Rd) → D(Rd) by
(τhφ)(x) = φ(x− hei).

a) Justify why (τh,iT )(φ) := T (τ−h,iφ) defines a distribution.
b) Show that

lim
h→0

T − τh,iT

h
= DeiT in D′(Rd).

In this sense, the distributional derivatives are still limits of difference quotients.

Solution 8.1 : a) Clearly τh,iT is linear in φ. By Exercise 6.2-a)-iii), the operation τ−h,i is
continuous from D(Rd) to itself. Hence the composition with T defines continuous functional
on D(Rd).

b) Fix φ ∈ D(Rd) and denote its support byK. Then τ−h,iφ has support inK−hei ; therefore we

can find a compact set K̃ such that supp(φ− τ−h,iφ) ⊂ K̃ uniformly over all |h| ≤ 1. Moreover,
for any multi-index α, a second order Taylor expansion of Dαφ along the line [x, x+hei] yields
that∣∣∣∣Dα

(
1

h
(φ(x)− τ−h,iφ(x) +Deiφ(x)h)

)∣∣∣∣ =1

h
|(−Dαφ(x) + (Dαφ)(x+ hei)−DeiDαφ(x)h)|

≤1

2
sup
x∈Rd

|Dα+2eiφ(x)|h → 0 as h → 0.

Hence we proved that
1

h
(φ− τ−h,iφ) → −Deiφ in D(Ω).

We deduce that

T − τh,iT

h
(φ) = T

(
1

h
(φ− τ−h,iφ)

)
h→0−→ T (−Deiφ) = DeiT (φ).

Ex 8.2 (Fourier transform and distributional derivatives∗)
Let α ∈ Nd

0 be a multi-index.

a) Show that the function Rd → R : x 7→ xα is a tempered distribution.

b) Prove that for any T ∈ S ′(Rd)

D̂αT = (ik)α T̂ and x̂α T = (iD)αT̂ .

Hint: Use the corresponding identities for the Fourier transform on S (Rd).



c) Show that δ̂0 = 1 and 1̂ = (2π)dδ0. Then demonstrate the following identities in S ′(Rd)

D̂αδ0 = (ik)α and x̂α = (2π)d(iD)αδ0.

Ex 8.3 (Fourier transform of p.v.(1/x))
Let

T = p.v.
(1
x

)
.

a) Show that T is a tempered distribution on R.
Hint: Use the formula for T derived in the solution to Ex. 7.1.

b) Show that T̂ is a solution of the differential equation in S ′(R)

iDT̂ = 2πδ0.

Hint: Start with the identity x · T = 1.

c) Use b) to compute that T̂ = −iπ sign, where sign is the signum function

sign(x) = 1 (x > 0), sign(x) = −1 (x < 0), sign(x) = 0 (x = 0).

Hint: Employ Ex 7.3 and the fact that T is an odd distribution, i.e., T (φ(−·)) = −T (φ).

Solution 8.3 :
a) Recall that

p.v.
(1
x

)
(φ) =

∫ ∞

0

φ(x)− φ(−x)

x
dx.

As in the solution of Exercise 7.1 we can prove that∣∣∣∣φ(x)− φ(−x)

x

∣∣∣∣ ≤ 2 sup
y∈R

|φ′(y)|.

Hence we can estimate∣∣∣p.v.(1
x

)
φ(x)

∣∣∣ =∫ 1

0

2 sup
y∈R

|φ′(y)|dx+

∫
{|x|≥1}

|x|2|φ(x)| · |x|−2dx

≤2 sup
y∈R

|φ′(y)|+ 2 sup
y∈R

|y|2|φ(y)|

≤2(p0,1(φ) + p2,0(φ))

with the seminorms given by Definition 2.26.

b) Applying the Fourier transform to both sides of the identity x ·T = 1 we get from Ex 8.2 b)
and c) that

iDT̂ = 1̂ = 2πδ0.

c) Observe that sign = 2H − 1, where H = 1[0,+∞) is the Heaviside function ; by Remark 2.22,
we know that δ0 = DH. Thus D(sign) = 2δ0 and so we can rewrite b) as

D(iT̂ − πsign) = 0.



Thus, from Ex 7.3-b) there exists a constant c ∈ C such that 1

T̂ = −iπsign− ic.

It remains to show that c = 0. Notice that, since T is odd, so is T̂ : by a change of variables, one
can show that F [φ(−·)])(k) = F [φ](−k)). Since T̂ is odd, sign is odd (check it by definition),
but c is even, it must necessarily hold that c = 0. Indeed, for any φ ∈ S (Rd) it holds that

iπsign(φ) + ic(φ) = −T̂ (φ) = T̂ (φ(−·)) =− iπsign(φ(−·))− ic(φ(−·))
=iπsign(φ)− ic(φ)

from which it follows that c = 0.

Ex 8.4 (Two applications of the fundamental lemma of the calculus of variations)
a) For an open set Ω ⊂ Rd, we define the so-called Sobolev space

W 1,p(Ω) = {f ∈ Lp(Ω) : Deif ∈ Lp(Ω) ∀i = 1, . . . , d},

where Dei denotes the distributional derivative. In this case we say that f is weakly dif-
ferentiable and Deif is the weak i-th partial derivative. Show that the weak derivative is
unique.

b) Let Ω ⊂ Rd be open and 1 ≤ p < +∞. Show that D(Ω) is dense in Lp(Ω).
Hint: Recall that by the Riesz representation theorem, the dual space of Lp(Ω) can be identified with

Lq(Ω) with p−1 + q−1 = 1.

Solution 8.4 : a) Requiring that the distributional derivative belongs to Lp(Ω) means that
there exists g ∈ Lp(Ω) such that∫

Ω

φ(x)g(x) dx = −
∫
Ω

Deiφ(x)f(x) dx

for all φ ∈ D(Ω). If there are two such functions g1, g2 ∈ Lp(Ω), then their difference satisfies∫
Ω

φ(x)(g1(x)− g2(x)) dx = 0

for all φ ∈ D(Ω). Hence the fundamental lemma of the calculus of variations implies that
g1 = g2 a.e. which proves uniqueness as elements in Lp(Ω).

b) Assume by contradiction that the Lp-closure of D(Ω), denoted henceforth by X, is a proper
subset of Lp(Ω). Hence there exists f ∈ Lp(Ω) \ X. Since the set {f} is compact and X is
closed, and both sets are convex 2, by the geometric version of the Hahn-Banach theorem (for
real vector spaces) there exists G ∈ Lp(Ω)′ such that

G(f) < G(φ) ∀φ ∈ X. (1)

By the Riesz representation theorem we know that Lp(Ω)′ = Lq(Ω) 3 with p−1 + q−1 = 1, so
that there exists g ∈ Lq(Ω) ⊂ L1

loc(Ω) such that∫
Ω

g(x)f(x) dx <

∫
Ω

g(x)φ(x) dx

1. Exercise 7.3 was stated for distributions over R, so the conclusion was with c ∈ R. By separating real and
imaginary parts of the complex-valued distribution T̂ , here one can achieve the same conclusion with c ∈ C.

2. In abstract topological vector spaces, one can show that the closure of a convex set is always convex ;
the most direct way to prove it is using nets (which you are not required to know). Here, since Lp(Ω) is a
Banach space (thus metrizable), closed sets are equivalent to sequentially closed ones, so it suffices to work with
sequences (which instead you should know how to manipulate).

3. This is the key step where the restriction p < ∞ is needed. Indeed the statement is not true for p = ∞.



for all φ ∈ D(Ω). Since the left-hand side is fixed, we can vary φ by λφ for all λ ∈ R and deduce
that ∫

Ω

g(x)φ(x) dx = 0

for all φ ∈ D(Ω). The fundamental lemma of the calculus of variations yields that g = 0 a.e.
which yields a contradiction to (1).


